top of page
milkysa

What is a scientist doing on a mission that does not yet have a science team?

When I tell my scientist friends that I work part-time on the Mars 2020 Rover, I usually get confused looks: “But there’s no science team yet, what can you possibly be doing?”  Well, quite a lot actually!

I officially joined the 2020 mission operations team last fall as a science systems engineer.  A science systems engineer is someone who is focused on how all of the rover systems (from the components of the physical rover to the flight software that runs the rover to the ground network that we will use to build the commands during rover operations and process the data that the rover collects) will come together to support the science team.  We want to make sure that the people who are funding the rover – that means you, if you are an American – get the most scientific bang for their engineering buck. 

For the last 9 months or so, M2020 has been in what we call “Phase A” of project design – we are working out exactly what the rover is going to need to do (these are called requirements), paths forward for developing those capabilities, and thinking about how to test and verify that it can do those things before it launches. We are waiting for our science instruments to be selected by NASA HQ from the 58 proposals submitted from the Mars science community; however, even though we don’t exactly know which science instruments we will be carrying, we know the science goals of the rover.  We have a Project Scientist (Caltech professor Ken Farley), who is ultimately responsible to NASA HQ for the science achieved by the rover, but he can’t be everywhere all the time and he doesn’t have the familiarity with the engineering side of a spacecraft – so he has two science systems engineers to help make sure that the rover system will allow him and his team meet the science goals.

A major difference in science goals between M2020 and previous rovers is the development of a “returnable cache”. This means that M2020 must collect rock samples and put them in a cache, which a future mission could return to Earth should it be funded. The word “returnable” implies requirements for engineering (HOW to fill the cache?), planetary protection (how CLEAN is the cache?), and science (WHAT goes in the cache?). This latter component has a lot of implications that could easily be overlooked by the engineers focused on designing the hardware. One of the ways we tried to convey this message to the engineering team was to take some of them out into the field, and show them how a geologist would work to understand the history encoded in the landscape, and what samples would we choose to collect for further analysis. This was a lot of fun, but I’m going to save those stories for now – we’re hoping to put them up on the public M2020 website in the future. 

Another way to make sure that engineering decisions – even in this early stage of project development – are made with full recognition of the science implications of those decisions is to have a science representative in their meetings. That’s where I come in! One of the many meetings I’ve been attending is the cache hardware design team meetings so that I understand their trade spaces and to make sure they understand our science requirements, attending rover operability working group meetings to discuss how everything from the size of the heaters on the rover to the time that our relay orbiter flies overhead affects how much science we can do in a single Mars year, and where can we make reasonable changes to increase our science return. My job is to jump up occasionally to remind the engineers that we will want to collect soft rocks too (a whole different kind of drilling challenge), or that we need to take all the proper fieldwork-type measurements of the area to understand how the samples relate to the geology of area they were collected from, so we can’t just assume we will spend all of our time drilling or driving. 

It’s a lot of meetings, and a lot of discussing currently-nebulous design options or philosophical approaches to answering questions. It’s been a huge education for me in terms of developing a spacecraft, and how interconnected all aspects of a spacecraft are. It’s also been a time of emotional strain and growth for me, as sometimes I’ve had to speak up and argue against experienced engineers and managers, all of whom are very confident and not shy to share their opinions. I, on the other hand, am new to mission development, and if left to my own devices can be quite shy and introverted. I had to reconcile the fact that my area of scientific expertise is not astrobiology with the fact that I know more about astrobiology and the science goals of this mission than any of the engineers or managers. I went through a period of scrambling to find my confidence and my voice, but as I’ve gotten to know the team better and settle in to my new role, I have become more than willing to speak up and be an agitator on behalf of the future science team.

While it has been fun helping lay the groundwork for the rover, I’m looking forward to when some of these conversations become more concrete. All of us on the M2020 team – and in the Mars scientific community – are eagerly awaiting instrument selection.  Soon, I hope!

3 views

Recent Posts

See All

Comments


bottom of page